1. Introduction

There is a growing body of literature related to patterns of breast cancer treatment decision making. However, little of it has evaluated racial/ethnic differences in involvement and virtually none has included a large proportion of Latina patients [1,2]. Research has found that not all patients desire an active role in all decisions [3–7]. Furthermore, a substantial proportion of patients report a mismatch between their actual versus preferred role in surgical treatment decisions, with patients reporting both too little and too much involvement [6–10]. This mismatch is associated with lower patient satisfaction with both the decision making process and choice of treatment [6,7]. At the same time, research suggests that informed decision making for breast cancer treatment is lacking for African-American women and possibly other racial minorities [11,12]. These results imply that racial minorities may be at particular risk for making poor quality breast cancer treatment decisions. However, a major limitation of the current literature is the paucity of reports focusing on the treatment experience of Latina women with breast cancer.
Latinas comprise a growing proportion of the general population and are increasingly represented among women diagnosed with breast cancer [13]. Although increasing informed decision making has been highlighted as a mechanism for improving patient centered care – especially for racial/ethnic minorities [14–16] – few published reports have addressed Latina perspectives regarding cancer decision involvement and outcomes. Some studies suggest that Latina breast cancer patients may experience barriers to informed treatment decision making related to literacy, language and acculturation [1,2,17,18]. However, the reports have been limited by small samples in selected clinical settings. Thus, more research is needed with larger samples of Latinas in comparison to other racial/ethnic groups in more generalizable settings [1].

To address the gap in the literature, this paper addresses two research objectives: (1) to examine the degree to which Latina women (Spanish and English preferent) with breast cancer participate in informed surgical breast cancer treatment decision making compared to other race/ethnic groups and (2) to evaluate factors associated with the desired amount of involvement and informed decision making for surgical breast cancer treatment across racial/ethnic groups. In addition, we assessed some potential mechanisms for racial/ethnic differences in decision outcomes.

2. Methods

2.1. Study population

Los Angeles County resident women aged 20–79 years diagnosed with primary ductal carcinoma in-situ (DCIS) or invasive breast cancer (Stage I, II or III) from August 2005 through May 2006 were eligible for sample selection for the study. We excluded patients with stage 4 breast cancer, those who died prior to the deployment of the survey, and those who could not complete a questionnaire in English or Spanish.

2.2. Sampling

Patients were selected shortly after diagnosis on a monthly basis as they were reported to the Los Angeles Cancer Surveillance Program (LA-CSP), the Surveillance, Epidemiology, and End Results (SEER) Cancer Registry for Los Angeles County. This method of selection can yield a sample representative of the County population. We over-sampled African-American (AA) women and Latinas to increase their representation in the dataset. To do so, the LA-CSP identified all women meeting the eligibility criteria of AA race based on the demographic information available from the SEER data. Because Latina status is not accurately collected by the treating hospital at the time of diagnosis, and therefore not reliably included in the SEER data, we selected all women who were designated as Hispanic by the hospital as well as all women whose surname indicated a high probability of being Latina based on a list generated from the 1980 U.S. Census [19]. We then selected an approximately 11% random sample of the remaining white (non-Spanish surnamed) patients meeting eligibility criteria. Asian women were excluded because these women were already being enrolled in other studies.

Over the study period, 1766 eligible patients were accrued including 796 Latinas, 459 African-Americans, 478 Caucasians, and 33 patients of other race/ethnicity. The accrued sample included approximately two thirds of the Latina and AA patients and 14% of White patients diagnosed with breast cancer in LA County during the study period. Sixty-eight patients were excluded because: (1) physician refused permission to contact (7), (2) the patient did not speak English or Spanish (8), (3) the patient was too ill or incompetent to participate (30), and (4) the patient denied having cancer (23). Of the 1698 patients included in the final accrued sample, 179 (10.5%) could not be located or contacted and 296 (17.5%) did not participate in the survey. A final sample of 1224 (72.0%) completed the survey. Our power calculations were based on extensive modeling using a prior population-based dataset of breast cancer patients, and the numbers of available Latina and AA breast cancer patients in the LA SEER catchment area. Our approach to over-sampling by race/ethnicity resulted in one of the largest and most racially/ethnically diverse samples (N = 1224) with sufficient power to test the study hypotheses.

2.3. Data collection and management

Physicians were notified of our intent to contact patients. If the physician did not refuse, we applied a modified Dillman survey method to encourage response [20]. This method involves the mailing of an introductory letter, risk and benefit informed consent sheet, survey materials with return envelope, and $ 10 cash gift. All patients who were likely to be Latina based on hospital or surname-based census information were sent bilingual materials that were translated into Spanish using a standard approach [21]. The correspondence between those identified with a Spanish surname and self-reporting Latina ethnicity was 98.2%. The Dillman method then involves telephone follow up to encourage response and post-card reminders for those without telephones, with a telephone survey option offered as a last report. Twenty-seven of the 1224 participants completed a telephone survey. Of these, 21 were Latinas, and 15 were conducted in Spanish. The survey procedures followed protocols established by the LA County SEER site. The study protocol was approved by the Institutional Review Boards of the University of Michigan and the University of Southern California.

Information from the survey was merged to SEER data for all patients in the final sample. An analysis of non-respondents vs. respondents showed no significant differences by age at diagnosis, or race/ethnicity. However, compared to respondents, non-respondents were less likely to have ever married (18.9% vs. 25.2%, p = .005), more likely to live in lower SES census tracts (48.6% vs. 40.2%, p = .030), more likely to have stage II or III disease (45.7% vs. 40.3% p < .001), and less likely to have received breast conserving surgery (BCS) (56.0% vs. 64.4%, p < .001).

For this analysis, we included women whose documented summary stage in SEER was DCIS, I, II or IIIa based on treatment guidelines of both the National Cancer Institute Physician Data Query (NCI-PDQ) database and the National Comprehensive Cancer Network (NCCN) that describe both mastectomy and BCS with radiation as viable options for these stages of cancer [22,23]. We excluded women with a self-reported clinical contraindication to BCS (about 20% of the sample).

2.4. Measures

The patient survey was developed based on extensive pilot testing and prior work by our team surveying breast cancer patients [6–8,11,12,18,24,25].

2.4.1. Dependent variables

We used four dependent variables for this analysis: (1) actual involvement in the breast cancer surgery decision (actual involvement), (2) match between actual and preferred involvement in this decision (match), (3) decision satisfaction, and (4) decision regret. The first dependent variable was measured using the Control Preferences Scale (CPS) developed by Degner [26] where respondents were asked to report their actual involvement...
in a medical decision on a 5 point scale (see Appendix A). We re-
coded this variable into three categories: doctor-based, shared/
collaborative, or patient-based, consistent with prior work
evaluating patient involvement in breast cancer treatment
decision making [6,9,27]. To evaluate match, patients were asked
to report whether they felt they had too much, the right amount, or
too little involvement in the surgery decision (see Appendix A).
Decision satisfaction and regret were both measured using
separate 5-item scales that are based on components of existing
scales [28,29] (see Appendix A). Higher scores on both scales
represented higher levels of both decision satisfaction and decision
regret. Each scale was categorized into three levels based on
tertiles representing low, medium and high amounts of decision
satisfaction and regret, respectively. For logistic regression, these
variables were dichotomized. For decision regret, 1 = a lot of regret
vs. 0 = none or some regret. Decision satisfaction was reverse-
coded to allow for direct comparison with decision regret: 1 = a lot
of decision dissatisfaction vs. 0 = none or some dissatisfaction.
Applying different categorizations of decision dissatisfaction and
regret did not significantly alter the results.

2.4.2. Patient-related independent variables
Our primary independent variable was patient race/ethnicity
which we categorized into four groups: (1) Latina-Spanish
preferent (L-SP), (2) Latina-English preferent (L-EP), (3) African-
American, and (4) Caucasian (C). The determination of whether a
Latina respondent was Spanish or English preferent was made
based on an algorithm used to assess language preference and
degree of acculturation, developed by Marin and colleagues and
used to measure degree of Latina acculturation [21,30].

Other demographic variables included age, education (less than
high school, high school graduate, some college or more), and
marital status (married, not married). We evaluated age both as a
continuous and categorical (29–44, 45–64, 65–79) variable. The
clinical variables used in the analysis were from the SEER record
and included the tumor size in centimeters, tumor histology (well
differentiated, moderately differentiated, poorly differentiated or
unknown) and tumor behavior (DCIS or invasive). We chose these
variables because this information is generally available at the
time of surgery consultation, while pathologic stage is not
available until after the biopsy [31]. We also evaluated type of
surgical treatment received (mastectomy vs. BCS).

2.4.3. Mechanistic variable(s)
We included three variables to assess possible underlying
mechanisms for associations between race/ethnicity and decision
outcomes. These included a measure of health literacy, need for
translation services, and whether women reported having a family
member or friend with them during their surgical consultation(s).
These measures were included based on research suggesting that
health literacy, need for translation, and involvement of friends/
family are particularly important to Latina women making health-
related treatment decisions [1,2,18,32,33]. Our health literacy
measure was developed from two questions in the patient survey
reflecting how often respondents had (1) trouble understanding
written information about breast cancer and (2) someone help them
read written information from the hospital or clinic. These measures
were combined to create a three-level measure of health literacy
based on tertiles, low, moderate or high. Need for translation and
having someone present were categorized as yes vs. no.

2.5. Analysis
We first generated descriptive statistics for the variables. We
then calculated an adjusted proportion of women in each of the
decision outcome categories by race/ethnicity, controlling for
other demographic and clinical variables. We compared differ-
ences between racial/ethnic groups for each decision outcome
using Wald tests. Point estimates were adjusted for design effects
by using a sample population weight that accounted for
differential selection by race, ethnicity, and non-response.

2.5.1. Analysis for involvement in decision making
We conducted multinomial logistic regression for both of our
three-level dependent variables, actual involvement and match.
For the first model – patient actual involvement in the surgery
decision – we used the shared decision as the base category (i.e.,
reference category). We regressed the 3-level actual involvement
outcome on all variables described above in a forward stepwise
manner: (1) race/ethnicity, plus other demographic and clinical
variables, (2) race/ethnicity, demographics, clinical variables, plus
mechanistic variables. For the second model – match between
preferred and actual involvement in the surgery decision – we used
the right amount of involvement as the reference category. We
followed the same procedures as in the first model. For each model,
we also conducted a Hausman test for independence of irrelevant
alternatives (IIA test) to ensure that our three-level comparison for
each outcome was correctly specified [34].

2.5.2. Analysis for decision dissatisfaction and decision regret
We conducted logistic regression of decision dissatisfaction and
decision regret following the steps described for the models above.
All analyses were conducted in STATA version 10.0 for Windows
[35].

3. Results
The final analytic sample size for this analysis was 925 patients
with stage 0, I, II, or IIIa and no clinical contraindications to BCS.
The mean time between the date of definitive surgical treatment
and response to the survey was 9 months. There were no
significant differences in tumor behavior (DCIS vs. invasive) or
treatment received by race/ethnicity (Table 1). About 18% of all
women received mastectomy. About two-thirds of women
reported that they had completed radiation and chemotherapy
treatment by the time they participated in the survey.

3.1. Decision outcomes
Overall, 37% of women reported a shared surgical treatment
decision, 36% reported a patient-based decision, and 27% reported
a surgeon-based decision. The majority (93%) reported a match
between actual and preferred involvement in the breast cancer
surgery decision, while 3% reported having too much involvement
and 4% reported having too little. Thirty three percent of the
sample reported having high decision satisfaction, while 38% had
moderate satisfaction and 30% had low decision satisfaction (i.e.,
high decision dissatisfaction). About 39% had a lot of decision
regret, 30% a moderate amount of regret and another 31% reported
very little regret.

3.2. Patient characteristics
The race/ethnic distribution of the sample was: 25.2% Latina-SP,
20.6% Latina-EP, 24% African-American, 26.1% Caucasian and 4.1%
other. For purposes of these analyses those indicating ‘other’ race/
ethnic group were excluded (N = 48). The mean age of patients was
59 years (range 29–79). Table 1 shows the proportion of women
with different demographic and clinical factors by race/ethnicity.
Latina women, both Spanish and English preferent, were sig-
nificantly younger than Caucasian women ($p < 0.001$). Latina-SP women were significantly less likely to have some college or more education compared to other groups ($p < 0.001$). Latina-SP women were significantly more likely to have low health literacy as measured in our study than any of the other racial/ethnic groups (28.1%, 8.0%, 6.2%, and 4.5% for Latina-SP, Latina-EP, AA and Caucasian women, respectively, $p < 0.001$). As expected, Latina-SP women used more translation services than other racial/ethnic groups. About three-quarters of all women reported having someone with them during treatment discussions.

3.3. Decision outcomes by race/ethnicity

Fig. 1 provides the adjusted proportion of respondents reporting each of the three categories of actual involvement (surgeon-based, shared, patient-based) by racial/ethnic group, controlling for demographic and clinical factors. Latina-SP women were slightly less likely to report a patient-based decision than the other groups ($p < 0.10$). We also found that Latina-SP women were slightly more likely to report too little involvement compared to other groups (results not shown). Fig. 2 shows the proportion of women in each racial/ethnic group who reported high decision dissatisfaction and/or a lot of decision regret. Latina-SP women reported having both high dissatisfaction and a lot of regret significantly more often than women of other racial/ethnic groups ($p < 0.001$).

3.4. Factors associated with decision dissatisfaction and regret

Tables 2 and 3 provide the logistic regression results for correlates of high decision dissatisfaction (Table 2) and a lot of decision regret (Table 3). The first column of both tables provides the unadjusted results for race/ethnicity. The second column provides the results, controlling for other demographic and clinical factors, and the third column shows results controlling for the mechanistic variables.

![Fig. 1. Actual decision involvement by race/ethnicity.](image-url)
As seen in Tables 2 and 3, without adjusting for other factors, Latina-SP women were 8.7 times as likely as Caucasian women to report high levels of decision dissatisfaction and 9.4 times as likely to report decision regret. The unadjusted column shows that Latina-EP and African-American women were also significantly more likely than Caucasian women to report high decision dissatisfaction and regret \((p < 0.01)\). When other factors were controlled, Latina-SP women continued to be the most likely to report high decision dissatisfaction and regret though the odds were reduced in both cases (OR: 5.6; 95% CI 3.2–9.8 for dissatisfaction; OR: 5.6; 95% CI 3.2–9.9 for decision regret) compared to Caucasian women. The other racial/ethnic groups were also more likely than Caucasian women to report dissatisfaction and regret controlling for other factors \((p < 0.05\) across racial/ethnic groups). While women with less than a high school education were more likely than those with some college to report decision dissatisfaction \((OR: 1.8; 95\% CI 1.1–2.8)\), there was no significant association between low education and decision regret. However, including education in the model did reduce the difference in decision regret between Latina-SP and Caucasian women (unadjusted OR: 9.4 vs. adjusted OR: 5.6) None of the clinical variables, including type of surgical treatment, were significantly associated with high decision dissatisfaction or regret.

The third column of both tables shows the results for race/ethnicity when controlling for the three mechanistic variables. Women with low health literacy were significantly more likely than those with high health literacy to report both decision dissatisfaction and regret \((OR: 5.6; 95\% CI 3.2–9.9 for dissatisfaction; OR 3.5; 95\% CI 1.8–7.1 for regret)\). Those with moderate health literacy were also more likely to report dissatisfaction and regret \((p < 0.01)\) than those with high literacy. Having someone with you during treatment discussions was negatively associated with decision dissatisfaction \((OR: 0.65; 95\% CI 0.44–0.96)\); while it was also negatively associated with regret this association was not significant (Table 3). Translation was not associated with either dissatisfaction or regret. Although including the mechanistic variables, specifically health literacy, did not attenuate the association between race/ethnicity and decision outcomes, it did significantly reduce differences in decision regret between Latina-SP and Caucasian women (from an adjusted OR of 5.6 to an adjusted OR of 4.1 including mechanistic variables).

Table 2

<table>
<thead>
<tr>
<th>Race/ethnicity</th>
<th>Unadjusted OR (95% CI)</th>
<th>Adjusted ORa (95% CI)</th>
<th>Adjusted ORa (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latina-SP</td>
<td>8.7 (5.5, 13.6)</td>
<td>5.7 (3.2, 9.8)</td>
<td>5.5 (2.9, 10.5)</td>
</tr>
<tr>
<td>Latina-EP</td>
<td>3.6 (2.3, 5.8)</td>
<td>3.1 (1.9, 5.0)</td>
<td>3.8 (1.6, 5.1)</td>
</tr>
<tr>
<td>African-American</td>
<td>2.3 (1.5, 3.7)</td>
<td>2.2 (1.4, 3.6)</td>
<td>2.1 (1.3, 3.4)</td>
</tr>
<tr>
<td>Caucasian</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Education

<table>
<thead>
<tr>
<th>Education</th>
<th>Unadjusted OR (95% CI)</th>
<th>Adjusted ORa (95% CI)</th>
<th>Adjusted ORa (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than high school</td>
<td>1.8 (1.2, 2.8)</td>
<td>1.4 (0.88, 2.3)</td>
<td>1.3 (0.97, 1.1)</td>
</tr>
<tr>
<td>High school graduate</td>
<td>1.4 (0.97, 2.2)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Some college or more</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Health literacy

<table>
<thead>
<tr>
<th>Health literacy</th>
<th>Unadjusted OR (95% CI)</th>
<th>Adjusted ORa (95% CI)</th>
<th>Adjusted ORa (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>5.6 (2.9, 11.1)</td>
<td>5.0 (2.6, 9.3)</td>
<td>4.1 (2.2, 8.0)</td>
</tr>
<tr>
<td>Moderate</td>
<td>2.3 (1.6, 3.3)</td>
<td>1.8 (1.1, 3.0)</td>
<td>1.00</td>
</tr>
<tr>
<td>High</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Having someone with you</th>
<th>Unadjusted OR (95% CI)</th>
<th>Adjusted ORa (95% CI)</th>
<th>Adjusted ORa (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.65 (0.44, 0.96)</td>
<td>0.65 (0.44, 0.96)</td>
<td>0.65 (0.44, 0.96)</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Race/ethnicity</th>
<th>Unadjusted OR (95% CI)</th>
<th>Adjusted ORa (95% CI)</th>
<th>Adjusted ORa (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latina-SP</td>
<td>9.4 (5.7, 14.9)</td>
<td>5.6 (3.1, 9.9)</td>
<td>4.1 (2.2, 8.0)</td>
</tr>
<tr>
<td>Latina-EP</td>
<td>3.1 (1.9, 5.1)</td>
<td>2.6 (1.6, 4.4)</td>
<td>2.0 (1.2, 3.7)</td>
</tr>
<tr>
<td>African-American</td>
<td>2.2 (1.4, 3.6)</td>
<td>2.0 (1.2, 3.3)</td>
<td>1.8 (1.1, 3.0)</td>
</tr>
<tr>
<td>Caucasian</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Health literacy

<table>
<thead>
<tr>
<th>Health literacy</th>
<th>Unadjusted OR (95% CI)</th>
<th>Adjusted ORa (95% CI)</th>
<th>Adjusted ORa (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>3.5 (1.8, 7.1)</td>
<td>3.5 (1.8, 7.1)</td>
<td>3.5 (1.8, 7.1)</td>
</tr>
<tr>
<td>Moderate</td>
<td>2.1 (1.4, 3.1)</td>
<td>2.1 (1.4, 3.1)</td>
<td>2.1 (1.4, 3.1)</td>
</tr>
<tr>
<td>High</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Having someone with you</th>
<th>Unadjusted OR (95% CI)</th>
<th>Adjusted ORa (95% CI)</th>
<th>Adjusted ORa (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.72 (0.43, 1.1)</td>
<td>0.72 (0.43, 1.1)</td>
<td>0.72 (0.43, 1.1)</td>
</tr>
</tbody>
</table>

Notes

a Controlling for age, marital status, clinical factors, and translation.
4. Discussion and conclusion

4.1. Discussion

To our knowledge, this is the first analysis of breast cancer treatment decision making in a large population-based sample with substantial representation by Latinas, especially with low acculturation. Our results are consistent with what has been suggested in previous work. In one of the first papers about breast cancer treatment decision making to include Latinas, Maly et al. [2] found that Latina ethnicity was negatively associated with the provision of interactive information support by physicians (i.e., provision of information by physician with elicitation of patient feedback). This study also found that racial/ethnic minority patients more often preferred interpersonal sources of information to written information, yet were less likely than Caucasians to have received this type of interaction [2]. Another paper by Maly et al. [33] also showed that interactive informational support from providers could serve as a mechanism for reducing disparities in informed decision making, such as those seen in our results. A small qualitative study found that although Latina breast cancer patients perceived the physician-patient interaction to be an important element of quality care, Latinas had considerable distrust regarding information received about breast cancer from providers [36]. These results suggest that providers should try to convey information in a culturally acceptable manner.

While Latinas in our study reported the same amount of shared decision making as other groups, they were slightly more likely to report a mismatch between actual and preferred involvement. Other research has shown that this match is important for achieving decision and treatment satisfaction [6,7,10]. Our results suggest that matching preferred to actual involvement may be especially important for Latinas with low acculturation. Prior work by our team, and others, has found that patient–physician communication was associated with achieving this match [7,9], providing further evidence to support that the provider plays an important role in ensuring patients obtain their desired amount of involvement in decisions.

A possible explanation for the findings related to poor decision outcomes in the less acculturated, Latina-SP, group lies with the decision process; specifically with language barriers and poor communication with providers regarding treatment options. Studies have demonstrated the importance of physician–patient communication in general [37,38], and for breast cancer treatment specifically [9,39–41]. However, none have included sufficient samples of Latinas to evaluate the impact of language and/or culture on decision making. Many studies have found that language and acculturation are important factors in Latina patients’ utilization of services, such as cancer screening and diabetes care [42–44]. It would follow that these issues are important to Latinas faced with breast cancer treatment decisions. Only two papers to date have assessed the impact of acculturation on breast cancer treatment decision making [17–19]. In a prior study with fewer Latinas, our team found that less acculturated Latinas had the highest odds of decision dissatisfaction [18]. Maly et al. [17] found that the role of family in decision making was greatest for Latinas with low acculturation. We found in this study that many women reported including others in treatment discussions. While we did not specifically ask whether a family member helped with treatment decision making, we did find that having someone with you during treatment discussions was associated with better decision outcomes across race/ethnicity. This result is consistent with other research documenting the importance of companions in cancer communications [45].

Ongoing work by our team provides another possible reason for the poor decision outcomes reported by less acculturated Latinas, supporting the idea that Latinas may be less satisfied with the decision making process compared to other groups. We found that despite reporting receiving similar amounts of information about surgical treatments as Caucasians, Latinas with low acculturation reported a strong desire for more information [46]. These results, coupled with those above, suggest that additional effort may be needed by clinicians to ensure that information is understandable and culturally appropriate and improve the decision making process for all breast cancer patients.

Our limited measure of health literacy was independently associated with decision dissatisfaction and regret, and slightly reduced the association between race/ethnicity and decision regret. Thus, despite Latina-SP women having significantly less education than other women, low literacy did not fully account for all poor decision outcomes. Simply directing providers to target discussion to a lower literacy level may not be sufficient to improve decision satisfaction among Latina-SP women. Moreover, a recent study found that providers overestimated the literacy levels of their patients, particularly for minority patients, suggesting a possible source of disparities in certain health outcomes [47]. However, as recommended by the Institute of Medicine, language and literacy issues need to be addressed by providers in any healthcare decision [48].

Our study has some limitations. First, the measures used in our analysis came from patient self-report and may be subject to recall bias. Second, the study was cross sectional and we can only determine associations between independent variables and our outcomes of interest. Third, our study was conducted in one geographic location and despite the racial/ethnic diversity may not be generalizable to other women with breast cancer. Though we did achieve high representation of Latinas, we were not able to evaluate decision making among Latina sub-groups. Our outcomes may have also been subject to measurement error. Our measures may not be best suited for evaluating decision making among Latinas. For example, the Control Preferences Scale does not allow for the influence of family in the decision making process. Finally, our measure of language preferences was a proxy for acculturation and further work assessing the role of culture in decision making is needed.

4.2. Conclusion

Latina women, especially those who prefer Spanish, appear to be at increased risk for poor breast cancer treatment decision outcomes. Although there were no racial/ethnic differences in tumor behavior (DCIS vs. invasive), or in subsequent treatment (mastectomy vs. BCS), Latinas in our study were significantly more likely than Caucasian patients to experience decision dissatisfaction and regret. The finding that health literacy was independently associated with poor decision outcomes indicates that this is an important contributor to poor decision outcomes among racial/ethnic breast cancer patients. Overall, our results suggest that despite similar clinical outcomes, patient experiences with decision making were very different.

4.3. Practice implications

Providers need to be aware that minority and low literacy patients, especially less acculturated Latinas, are vulnerable to poor decision outcomes. Clinicians should be attentive to patient preferences for involvement in decision making and to the inclusion of others (e.g., family) in decision making. Interventions to improve the ability of providers to communicate in a culturally...
appropriate manner, and to accurately assess the health literacy of their patients, may improve the process of breast cancer treatment decision making.

Acknowledgements

The collection of cancer incidence data used in this study was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885; the National Cancer Institute’s Surveillance, Epidemiology and End Results Program under contract N01-PC-35139 awarded to the University of Southern California, contract N01-PC-54404 awarded to the Public Health Institute; and the Centers for Disease Control and Prevention’s National Program of Cancer Registries, under agreement 1U58DP00807-01 awarded to the Public Health Institute. The ideas and opinions expressed herein are those of the author(s) and endorsement by the State of California, Department of Public Health the National Cancer Institute, and the Centers for Disease Control and Prevention or their Contractors and Subcontractors is not intended nor should be inferred. We acknowledge the outstanding work of our research coordinator, data analyst and project staff, Barbara Salem, Paul Abrahamse and Ashley Gay. We would also like to acknowledge the breast cancer patients who responded to our survey.

Funding: This work was funded by grant number R01-CA109696 from the National Cancer Institute to the University of Michigan.

Appendix A

Latina patient perspectives about informed treatment decision making for breast cancer

Decision outcomes

I. Patient actual involvement in surgical treatment decision

(Control Preferences Scale from Degner, 1992)

Please describe how your surgical treatment decision was made (choose one):

- My doctor(s) made the surgery decision with little input from me.
- My doctor(s) made the surgery decision but seriously considered my opinion.
- My doctor(s) and I made the surgery decision together.
- I made the surgery decision after seriously considered my doctor(s) opinions.
- I made the surgery decision with little input from my doctor(s).

II. Match between actual-preferred involvement

Thinking back over your surgical breast cancer decision, would you say:

- I wish I had been more involved in the surgical treatment decision.
- My level of involvement was about right for me.
- I wish my surgeon had been more involved in the surgical treatment decision.

III. Decision satisfaction 5-item scale

(All 5-point Likert Scale response options from strongly agree to strongly disagree)

- I am satisfied I was adequately informed about the issues important to the decision about what kind of surgery to have.
- I am satisfied with the decision about what kind of surgery to have.

IV. Decision regret 5-item scale

(All 5-point Likert Scale response options from strongly agree to strongly disagree)

- I wish I had given more consideration to other surgical treatment options.
- I would have liked more information when the decision about surgery was made.
- I would like to have participated more in making the decision about what kind of surgery to have.

Conflict of interest

The authors do not have any conflict of interest to disclose, including any financial, personal or other relationship within three years of beginning the submitted work that could inappropriately influence, or be perceived to influence, this work.

References

